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ABSTRACT 
 
We consider the problem of detecting the instantaneous 
cognitive state of a human subject based on their 
observed functional Magnetic Resonance Imaging 
(fMRI) data.  Whereas fMRI has been widely used to 
determine average activation in different brain regions, 
our problem of automatically decoding instantaneous 
cognitive states has received little attention.  This 
problem is relevant to diagnosing cognitive processes in 
neurologically normal and abnormal subjects.  We 
describe a machine learning approach to this problem, 
and report on its successful use for discriminating 
cognitive states such as “observing a picture” versus 
“reading a sentence,” and “reading a word about 
people” versus “reading a word about buildings.” 
 

1. INTRODUCTION 
The study of human brain function has received a 
tremendous boost in recent years from the advent of 
functional Magnetic Resonance Imaging (fMRI), a brain 
imaging method that dramatically improves our ability 
to observe correlates of brain activity in human subjects.  
This fMRI technology has now been used to conduct 
hundreds of studies that identify which regions of the 
brain are activated when a human performs a particular 
cognitive function (e.g., reading, mental imagery, 
remembering).  The vast majority of published research 
summarizes average fMRI responses when the subject 
responds to repeated stimuli of some type (e.g., reading 
sentences).  The most common results of such studies 
are statements of the form “fMRI activity in brain 
region R is on average greater when performing task T 
than when in control condition C.”  Other results 
describe the effects of varying stimuli on activity, or 
correlations among activity in different brain regions.  
In all these cases the approach is to report descriptive 
statistics of effects averaged over multiple trials, and 
often over multiple voxels and/or multiple subjects. 

In contrast, we propose here a qualitatively different 
way to utilize fMRI data, based on machine learning 
methods.  Our goal is to automatically classify the 
instantaneous cognitive state of a human subject, given 
his/her observed fMRI activity at a single time instant or 
time interval.  We describe here initial results, in which 

we have successfully trained classifiers to distinguish 
between instantaneous cognitive states such as “the 
subject is reading an ambiguous sentence” versus “the 
subject is reading an unambiguous sentence.”  Note that 
our objective differs in two ways from the objective of 
earlier statistical analyses of average effects:  First, we 
are interested in learning the mapping from observed 
fMRI data to the subject’s instantaneous mental state, 
instead of the mapping from a task to brain locations 
typically activated by this task.  Second, we seek 
classifiers that must make decisions based on fMRI data 
from a single time instant or interval, rather than 
statements about average activity over many trials. 

Why this is an interesting problem?  Because if we could 
develop such classifiers they would provide a new tool 
for decoding and tracking the sequence of hidden 
cognitive states a subject passes through when 
performing some complex task, or for diagnosing their 
hidden difficulties in performing that task.  Put 
succinctly, such classifiers would constitute virtual 
sensors of the subject's cognitive states, which could be 
used across a broad range of cognitive science research 
and diagnostic medical applications.   

2. fMRI 
An fMRI experiment produces time-series data that 
represent brain activity in a collection of 2D slices of the 
brain.  Multiple 2D slices can be captured, forming a 3D 
image (the aggregate of all the slice planes) that may 
contain on the order of 15,000 voxels, each of which can 
measure the response of a 3x3x5-mm3 region of the 
brain.  Images of 15,000 voxels can be acquired at the 
rate of one or two per second with high field (3 Tesla) 
echoplanar imaging.  The resulting fMRI time series thus 
provides a high-resolution 3D movie of the activation 
across a large fraction of the brain.   

The actual “activation” we consider at each voxel is 
called the Blood Oxygen Level Dependent (BOLD) 
response, and reflects the ratio of oxygenated to de-
oxygenated hemoglobin in the blood at the 
corresponding location in the brain. Neural activity in 
the brain leads indirectly to fluctuations in the blood 
oxygen level, which are measured as the BOLD 
response by the fMRI device.  Despite the limitations in 



its spatial and temporal resolution, fMRI provides 
arguably the best view into activity across the human 
brain that is available today. 

3. PRIOR WORK 
The approach most commonly used to analyze fMRI 
data is to test hypotheses regarding the location of 
activation, based on regressing the signal on stimuli and 
behavioral information. One widely used package for 
doing so is SPM [2].  

Haxby and colleagues [3] showed that different patterns 
of fMRI activity are generated when a human subject 
views a photograph of a face versus a house, versus a 
shoe, versus a chair.  While they did not specifically use 
these discovered patterns to classify subsequent single-
event data, they did report that by dividing the fMRI 
data for each photograph category into two samples, 
they could automatically match the data samples related 
to the same category.  Others [9] reported that they have 
been able to predict whether a verbal experience will be 
remembered later, based on the magnitude of activity 
within certain parts of left prefrontal and temporal 
cortices during that experience.   

4. APPROACH 
Our approach to classifying instantaneous cognitive 
states is based on a machine learning approach (see [6]), 
in which we train classifiers to predict the subject’s 
cognitive state given their observed fMRI data.  The 
trained classifier represents a function of the form:  

f: fMRI(t,t+n)  Y 

where fMRI(t,t+n) is the observed fMRI data during the 
interval from time t to t+n, Y  is a finite set of cognitive 
states to be discriminated, and the value of 
f(fMRI(t,t+n)) is the classifier prediction regarding 
which cognitive state gave rise to the observed fMRI 
data fMRI(t,t+n).  The classifier is trained by providing 
examples of the above function (i.e., fMRI observations 
along with the known cognitive state of the subject). 
The input fMRI(t,t+n) is represented as a feature vector, 
where each feature may correspond to the observed 
fMRI data at a specific voxel at a specific time.  In some 
cases, we use features computed by averaging the fMRI 
activations over several voxels, or by selecting a subset 
of the available voxels and times.   

Our learning method in these experiments was a 
Gaussian naïve Bayes (GNB) classifier (see, e.g., [8]). 
The GNB classifier uses the training data to estimate the 
probability distribution over fMRI observations given 
the subject is in cognitive state Yi, P(fMRI(t,t+n) | Yi) for 
each cognitive state Yi under consideration.  To estimate 

this distribution, it assumes the features xj describing 
fMRI(t,t+n) are conditionally independent given Yi, and 
thus models P(fMRI(t,t+n) | Yi) as the product over all 
features xj of P(xj | Yi).  Each P(xj | Yi) is modeled as a 
Gaussian distribution, whose mean and variance are 
estimated from the training data using maximum 
likelihood estimates.  The GNB also estimates the class 
priors P(Yi) from the training data.  New examples are 
classified using the learned P(fMRI(t,t+n) | Yi) along 
with Bayes rule to calculate the posterior probability 
P(Yi |fMRI(t,t+n)) of cognitive state Yi given the new 
observation fMRI(t,t+n).  The most probable Yi is output 
as the classifier prediction. 

5. EXPERIMENTAL RESULTS 
Successfully training classifiers to decode cognitive 
states rests on two key assumptions: (a) the fMRI data 
contains sufficient information to distinguish interesting 
sets of cognitive states, and (b) machine learning 
algorithms can successfully learn the spatial-temporal 
fMRI patterns that distinguish these cognitive states.  In 
this section we present experimental results indicating 
that both assumptions are warranted.  In particular, we 
describe the use of machine learning methods to train 
classifiers for a variety of cognitive states, using data 
from four distinct fMRI studies.  These results and data 
analysis methods are described in greater detail in [7]. 

5.1 Word Semantic Categories Study 
In this fMRI study, ten human subjects were presented 
words one at a time, using a block design in which 
words from a single semantic category were presented 
within each block (a 'block' is a contiguous interval in 
time).  The twelve categories of words presented were 
‘fish’ ‘four-legged animals,’ ‘trees,’ ‘flowers,’ ‘fruits,’ 
‘vegetables,’ ‘family members,’ ‘occupations,’ ‘tools,’ 
‘kitchen items,’ ‘dwellings,’ and ‘building parts.’  At the 
beginning of each of the twelve blocks, the name of a 
category was displayed for 2 seconds, and the subject 
was then shown a sequence of 20 words, each presented 
for 400 msec followed by 1200 msec of blank screen.  
The subject was instructed to push a button after each 
word, to indicate whether the word belonged to the 
category named at the beginning of the block.  At least 
19 of the 20 words in each block were in the category -- 
the task was designed merely to ensure the subject 
attended to the meaning of each word. Between each 
block of words, a several second pause, or ‘fixation 
period’, was inserted.  fMRI images were acquired once 
per second.  We restricted our analysis to 30 
anatomically defined regions of interest within the 
brain, yielding a total of 8,470 to 11,136 voxels, 
depending on the subject. 



In this case we considered the task of learning to decode 
the semantic category of the word the subject was 
viewing, based on their instantaneous fMRI activity, 
i.e., learning the following classifier function: 

fs: fMRIs(t)  Y 

where fMRIs(t) is the observed fMRI data for subject s at 
time t, Y  is the set of 12 possible word categories, and 
the value of fs(fMRIs(t)) is the word category that gave 
rise to the fMRI image in subject s at time t.  We trained 
a GNB classifier, representing the classifier input 
fMRIs(t) by the vector of fMRI signal values observed at 
time t at selected voxels.   

We selected voxels based on their activity during word 
blocks compared to fixation (the periods between blocks 
of words).  In particular, for each word category yi and 
for each voxel v a t-test was conducted, comparing the 
activity of v during the stimulus yi versus fixation.  
Voxels were then selected by choosing for each yi the 
voxel with the largest t-statistic, removing these voxels 
from the pool, and then repeating this process until a 
total of 1200 voxels were selected.   

We evaluated the performance of trained classifiers 
using standard leave-one-out cross validation, in which 
each fMRI image in the training set was held out in turn 
as a test example while training on remaining data.  
When holding out the image at time t as a test example, 
we also removed from the training data any image 
within 5 seconds of t, to avoid training on images likely 
to be correlated with the test image (due to the 
prolonged BOLD response).  

For each test input, the trained classifier output a rank 
ordered list of the twelve word categories, from most to 
least probable according to its learned model.  Classifier 
accuracy was measured by the percentile rank of the 
correct class in the output sorted list (perfect=1.0, 
random guessing=0.5, worst = 0).  This accuracy 
measure for each of the ten trained classifiers (one per  
human subject) is as follows:  

Subject A B C D E F G H I J
Accuracy .89 .88 .96 .90 .94 .93 .89 .96 .87 .96  

Note if the classifiers were guessing at random the 
expected accuracy would be 0.5. Given that these results 
were obtained independently for each subject, it is 
highly improbable that such high accuracies could have 
arisen by chance.  One way to understand the trained 
classifiers is to examine which portions of the brain 
were used by the learned classifier to decode the word 
category.  To achieve this, one can create a false-color 
brain image in which each voxel is colored by the 
accuracy of a classifier that is allowed to use only this 

single voxel.  These false-color images are shown in 
Figure 1 for three of the ten subjects.  Higher accuracy 
voxels are shown in darker color.  Note the higher 
accuracy voxels cluster spatially, and that these clusters 
are found in similar regions across all three brains.  The 
lower, larger cluster is in a location consistent with an 
earlier study of semantic categories reported by Haxby 
et al., [3] which found distinctive activation in a similar 
region when subjects were shown photographs (in 
contrast to our words) from different semantic 
categories such as faces, buildings, chairs, and shoes.  
The two upper clusters (located in inferior dorsolateral 
prefrontal cortex) are in a region not reported by 
Haxby’s study.  

The significant accuracy of these classifiers, the fact that 
highly discriminating voxels occur in similar brain 
regions across subjects, and the correspondence to 
Haxby’s results on semantic categories all support the 
conclusion that our classifiers successfully learned to 
decode the semantic category of the word based on a 
single fMRI image.   

5.2 Picture-Sentence Study 
In this study (see [1] for a description of a similar task) 
13 subjects were each presented 20 trials.  In each trial 
they were shown a sentence (for 4 seconds, followed by 
a blank screen for 4 seconds), and a simple picture (for 
4 seconds, followed by a blank screen for 4 seconds), 
and then answered (by pressing a mouse button) 
whether the sentence correctly described the picture.  In 
10 of these trials the sentence was presented first, in the 
other 10 the picture was presented first. Pictures were 
geometric arrangements of two of the symbols ‘*’, ‘+’, 
and ‘$’, and sentences were descriptions such as “It is 
not true that the plus is below the star.”  Images were 
collected every 500 msec.  We restricted our analysis to 
seven anatomically defined brain regions of interest 
containing a total of 1,397 to 2,864 voxels, depending 
on the subject. 

We used this data set to explore the feasibility of 
training classifiers to distinguish whether the subject is 
visually examining a sentence or a picture, based on 
their fMRI activation.  More precisely, for each subject 
s we trained a classifier of the form: 

fs: fMRIs(t,t+8)  {P,S} 

where fMRIs(t,t+8) is the sequence of 16 observed fMRI 
images for subject s throughout the 8-second time 
interval  [t, t+8), and the target value for  
fs(fMRIs(t,t+8)) is P if the subject was viewing a picture 
during this interval, or S if the subject was viewing a 
sentence. In this study, we fix t to 1 or 9 so that the only



  

  

Figure 1.  Plots show, for each of three human subjects, locations of voxels that best predict the
semantic category of word read by the subject.  Darkened voxels are those that produce the highest
prediction accuracy; white voxels were also considered but were found to be less informative.  Note
the similar locations of  predictive voxels across these three subjects. 

time intervals considered are those that align with the 8- 
second intervals during which the subject was seeing 
either a picture or a sentence.   

subject.  A key technical difficulty when combining data 
from multiple subjects is that different brains have 
physically different shapes, making it unclear how to 
align voxels across subjects (e.g., see the brains 
illustrated in Figure 1).  To address this issue, we 
spatially abstracted the voxel activities for each subject.  
In particular, we first manually marked up each brain by 
identifying seven anatomically-defined regions of 
interest (ROIs), such as the left temporal lobe. We then 
treated each of these seven ROI’s as a very large 
“supervoxel,” defining its activity to be the mean 
activity of the voxels it contained.  The data for each 
subject was represented by the activity of these seven 
supervoxels over time, providing a common 
representation across subjects, at a considerable cost in 
spatial resolution. 

To train a GNB classifier for each subject, we first 
rescaled the data for each voxel to give it the same 
maximum and minimum activation across all trials, to 
compensate for variation in activity over time.  We then 
selected a subset of voxels using the same voxel 
selection algorithm described in section 5.1.  The values 
of each selected voxel for each of the 16 images were 
concatenated to form a feature vector describing the 
activity of these selected voxels over time.  Hence, n 
selected voxels produce a feature vector of length 16 n.  
This feature vector was used as the GNB classifier 
input. 

We trained a multi-subject GNB for Picture vs. 
Sentence classification, using a leave-one-subject-out 
testing regime. Here each of the 13 subjects was used in 
turn as the test subject, while training on the remaining 
12 subjects.  The average accuracy of predictions for the 
left out subject was .81 ± .034 (P0 = 3.38 x 10-49) for the 
picture-then-sentence data, and .88 ± .028 (P0 = 5.97 x 10-

76) for the sentence-then-picture data.  Using the union 
of both data sets, the average accuracy was .75 ± .026 
(P0 = 1.17 x 10-71) over the left out subject.  Again these 
results are highly significant compared to the null 
hypothesis that classification was by chance (expected 
.50 accuracy).  Based on these results, it is clear that 
these classifiers discovered cross-subject regularities 
enabling them to distinguish cognitive states in new 
subjects, with accuracies rivaling those obtained when 
training single-subject classifiers.  This is encouraging, 
given our goal of training virtual sensors of cognitive 
states that work across many subjects.  Follow-on 
research is described in [10]. 

We trained distinct classifiers for each of 13 subjects. 
The average accuracy of these 13 classifiers was .80 
±.034 when considering only trials in which the picture 
was presented before the sentence, and .90 ± 0.26 when 
considering only trials in which the sentence was 
presented before the picture. Here the intervals on 
accuracy reflect 95% confidence intervals calculated 
using a standard Binomial analysis (see, e.g., [6]).  We 
also calculated the probability P0 of achieving these 
accuracies by chance, under the null hypothesis that the 
classifier was guessing at random.  The P0 values in 
these two cases are 10-46 and 10-86 respectively, 
indicating that the classifiers are indeed learning 
predictive patterns over the fMRI data. The different 
accuracies in these two cases are presumably due to 
differing brain activity arising from the two contexts. 

5.2.1 Multi-Subject Classifiers 

We next considered training a single classifier to fit data 
from 12 of the subjects, then testing it on a 13th   



5.3 Additional Studies 
We also trained classifiers using data from two 
additional studies (see [7] for details).  In one study [5], 
subjects were asked to read sentences.  Some of the 
sentences were ambiguous (e.g., “The experienced 
soldiers warned about the dangers conducted the 
midnight raid.”) and others were unambiguous but of 
the same length.  We trained GNB classifiers for single 
subjects, to decode whether the subject was reading an 
ambiguous or unambiguous sentence.  Accuracies 
ranged from .65 to .80 for individual subjects, compared 
to .50 by random chance. 

Another study involved showing individual words to 
subjects, and asking them to indicate whether the word 
was a noun or verb.   We trained single-subject  GNB 
classifiers to decode whether the word was perceived as 
a noun or verb, achieving accuracies from .75 to .81 for 
individual subjects. 

6. SUMMARY AND CONCLUSIONS 
The experimental results presented here demonstrate the 
feasibility of training classifiers to distinguish a variety 
of instantaneous cognitive states of human subjects 
based on their observed fMRI data.  Subject-specific 
classifiers were successfully trained using data from 
four fMRI studies, and in one of these studies a 
classifier was trained to apply across multiple subjects, 
including subjects outside the training data.  
Interestingly, it was possible to train accurate classifiers 
despite the limited number of training examples 
available (for each subject, approximately 30 examples 
per class in the semantic categories study, and 40 per 
class in the sentence-picture study). While these 
classifiers were limited to distinguishing among a 
predefined set of cognitive states, and were applied only 
to a predefined time window of fMRI data, they provide 
encouraging evidence that additional research in this 
direction is warranted.   

One direction for future research involves developing 
improved feature selection and classifier learning 
algorithms for single-subject and cross-subject 
classifiers, and testing these classifiers in additional 
settings.  A second direction is to explore the 
applicability of this approach to diagnostic classification 
problems, such as early detection of Alzheimer’s 
symptoms from fMRI data (perhaps in combination with 
structural MRI and other clinical data).  In both of these 
applications, we see the opportunity for considerable 
improvement over the baseline algorithms reported here.  
For example, we would like to develop methods for 
simultaneously decoding networks of interrelated 
cognitive states such as the sequence of states involved 
in performing complex cognitive tasks, and for 

discovering new abstractions of fMRI data that can be 
used to combine data from multiple subjects. 

Acknowledgements 
 
We thank Luis Barrios for very helpful inputs throughout this 
research. Rebecca Hutchinson was supported by an NSF 
Graduate Fellowship.  Radu Stefan Niculescu was supported 
by a Graduate Fellowship from the Merck Computational 
Biology and Chemistry Program at Carnegie Mellon 
University established by the Merck Company Foundation and 
by National Science Foundation (NSF) grant no. CCR-
0122581.  Francisco Pereira was supported by a PRAXIS XXI 
fellowship from Fundação. para a Ciência e Tecnologia, (III 
Quadro Comunitário de Apoio, Fundo Social Europeu), a PhD 
fellowship from Fundação Calouste Gulbenkian, and by the 
Center for the Neural Basis of Cognition at Carnegie Mellon 
University and the University of Pittsburgh.  
 

REFERENCES 
 

[1] Carpenter, P., Just, M., Keller, T., Eddy, W., and 
Thulborn, K. “Time Course of fMRI-Activation in 
Language and Spatial Networks during Sentence 
Comprehension”. Neuroimage 1999;10:216-224. 

[2] Friston, K. et al. “Statistical Parametric Maps in 
Functional Imaging: A General Linear Approach”. 
Human Brain Mapping 1995;2:189-210. 

[3] Haxby, J., et al. “Distributed and Overlapping 
Representations of Faces and Objects in Ventral 
Temporal Cortex”. Science 2001;293:2425-2430. 

[4] Lazar, N., Eddy. W., Genovese. C., and Welling, J. 
“Statistical Issues in fMRI for Brian Imaging”. 
International Statistical Review 1999;69:105-127. 

[5] Mason, R.., Just, M.., Keller, T.., and Carpenter, P. 
“Ambiguity in the Brain: What Brain Imaging Reveals 
about the Processing of Syntactically Ambiguous 
Sentences”. Journal of Experimental Psychology: 
Learning, Memory, and Cognition (in press). 

[6] Mitchell, T. Machine Learning, McGraw Hill 1997.  

[7] Mitchell, T., Hutchinson, R., Niculescu, R., Pereira, F., 
Wang, X., Just, M. and Newman, S. “Learning to Decode 
Cognitive States from Brain Images”, submitted to 
Machine Learning, April, 2003. 

[8] Ng, A., and Jordan, M. “A Comparison of Logistic 
Regression and Naïve Bayes”. Neural Information 
Processing Systems 2002;14. 

[9] Wagner, A., Schacter, D., Rotte, M., Koutstaal, W., 
Maril, A., Dale, A., Rosen, B. and Buckner, R..“Building 
Memories: Remembering and Forgetting of Verbal 
Experiences as Predicted by Brain Activity”, Science 
1998;281:1188-1191.  

[10]  Wang, X., Hutchinson, R., and Mitchell, T., “Training 
fMRI Classifiers to Detect Cognitive States across 
Multiple Human Subjects”. Submitted to Neural 
Information Processing Systems 2003. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 465
	02: AMIA 2003 Symposium Proceedings − Page 466
	03: AMIA 2003 Symposium Proceedings − Page 467
	04: AMIA 2003 Symposium Proceedings − Page 468
	05: AMIA 2003 Symposium Proceedings − Page 469


